Learning Causal Models of Relational Domains

نویسندگان

  • Marc E. Maier
  • Brian J. Taylor
  • Hüseyin Oktay
  • David D. Jensen
چکیده

Methods for discovering causal knowledge from observational data have been a persistent topic of AI research for several decades. Essentially all of this work focuses on knowledge representations for propositional domains. In this paper, we present several key algorithmic and theoretical innovations that extend causal discovery to relational domains. We provide strong evidence that effective learning of causal models is enhanced by relational representations. We present an algorithm, relational PC, that learns causal dependencies in a state-of-the-art relational representation, and we identify the key representational and algorithmic innovations that make the algorithm possible. Finally, we prove the algorithm’s theoretical correctness and demonstrate its effectiveness on synthetic and real data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the Structure of Causal Models with Relational and Temporal Dependence

Many real-world domains are inherently relational and temporal—they consist of heterogeneous entities that interact with each other over time. Effective reasoning about causality in such domains requires representations that explicitly model relational and temporal dependence. In this work, we provide a formalization of temporal relational models. We define temporal extensions to abstract groun...

متن کامل

Causal Discovery for Relational Domains: Representation, Reasoning, and Learning

CAUSAL DISCOVERY FOR RELATIONAL DOMAINS: REPRESENTATION, REASONING, AND LEARNING

متن کامل

A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics

Relational Causal Models (RCM) generalize Causal Bayesian Networks so as to extend causal discovery to relational domains. We provide a novel and elegant characterization of the Markov equivalence of RCMs under path semantics. We introduce a novel representation of unshielded triples that allows us to efficiently determine whether an RCM is Markov equivalent to another. Under path semantics, we...

متن کامل

A Sound and Complete Algorithm for Learning Causal Models from Relational Data

The PC algorithm learns maximally oriented causal Bayesian networks. However, there is no equivalent complete algorithm for learning the structure of relational models, a more expressive generalization of Bayesian networks. Recent developments in the theory and representation of relational models support lifted reasoning about conditional independence. This enables a powerful constraint for ori...

متن کامل

Discovering Latent Classes in Relational Data

We present a framework for learning abstract relational knowledge, with the aim of explaining how people acquire intuitive theories of physical, biological, or social systems. Our algorithm infers a generative relational model with latent classes, simultaneously determining the kinds of entities that exist in a domain, the number of these latent classes, and the relations between classes that a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010